1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
//! A low-level wrapping of libffi, this layer makes no attempts at safety, //! but tries to provide a somewhat more idiomatic interface. //! //! This module also re-exports types and constants necessary for using the //! library, so it should not be generally necessary to use the `raw` module. //! While this is a bit “Rustier” than [`raw`](../raw/index.html), I’ve //! avoided drastic renaming in favor of hewing close to the libffi API. //! See [`middle`](../middle/index.html) for an easier-to-use approach. use std::mem; use std::os::raw::{c_void, c_uint}; use raw; /// The two kinds of errors reported by libffi. #[derive(Copy, Clone, Debug, Hash, PartialEq, Eq, PartialOrd, Ord)] pub enum Error { /// Given a bad or unsupported type representation. Typedef, /// Given a bad or unsupported ABI. Abi, } /// The `Result` type specialized for libffi `Error`s. pub type Result<T> = ::std::result::Result<T, Error>; // Converts the raw status type to a `Result`. fn status_to_result<R>(status: raw::ffi_status, good: R) -> Result<R> { if status == raw::ffi_status_FFI_OK { Ok(good) } else if status == raw::ffi_status_FFI_BAD_TYPEDEF { Err(Error::Typedef) } else if status == raw::ffi_status_FFI_BAD_ABI { Err(Error::Abi) } // If we don't recognize the status, that is an ABI error: else { Err(Error::Abi) } } /// Wraps a function pointer of unknown type. /// /// This is used to make the API a bit easier to understand, and as a /// simple type lint. As a `repr(C)` struct of one element, it should /// be safe to transmute between `CodePtr` and `*mut c_void`, or between /// collections thereof. #[derive(Clone, Copy, Debug, Hash)] #[repr(C)] pub struct CodePtr(pub *mut c_void); // How useful is this type? Does it need all the methods? impl CodePtr { /// Initializes a code pointer from a function pointer. /// /// This is useful mainly for talking to C APIs that take untyped /// callbacks specified in the API as having type `void(*)()`. pub fn from_fun(fun: unsafe extern "C" fn()) -> Self { CodePtr(fun as *mut c_void) } /// Initializes a code pointer from a void pointer. /// /// This is the other common type used in APIs (or at least in /// libffi) for untyped callback arguments. pub fn from_ptr(fun: *const c_void) -> Self { CodePtr(fun as *mut c_void) } /// Gets the code pointer typed as a C function pointer. /// /// This is useful mainly for talking to C APIs that take untyped /// callbacks specified in the API as having type `void(*)()`. /// /// # Safety /// /// There is no checking that the returned type reflects the actual /// parameter and return types of the function. Unless the C /// function actually has type `void(*)()`, it will need to be /// cast before it is called. pub fn as_fun(&self) -> &unsafe extern "C" fn() { unsafe { mem::transmute::<&*mut c_void, &unsafe extern "C" fn()>(&self.0) } } /// Gets the code pointer typed as a “safe” C function pointer. /// /// This is useful mainly for talking to C APIs that take untyped /// callbacks specified in the API as having type `void(*)()`. /// /// # Safety /// /// There isn’t necessarily anything actually safe about the resulting /// function pointer—it’s up to the caller to know what they’re /// doing within the unsafety boundary, or undefined behavior may /// result. In particular, /// there is no checking that the returned type reflects the actual /// parameter and return types of the function. Unless the C /// function actually has type `void(*)()`, it will need to be /// cast before it is called. pub unsafe fn as_safe_fun(&self) -> &extern "C" fn() { mem::transmute::<&*mut c_void, &extern "C" fn()>(&self.0) } /// Gets the code pointer typed as a `const void*`. /// /// This is the other common type used in APIs (or at least in /// libffi) for untyped callback arguments. pub fn as_ptr(&self) -> *const c_void { self.0 } /// Gets the code pointer typed as a `void*`. /// /// This is the other common type used in APIs (or at least in /// libffi) for untyped callback arguments. pub fn as_mut_ptr(&self) -> *mut c_void { self.0 } } pub use raw::{ffi_abi, ffi_abi_FFI_DEFAULT_ABI, _ffi_type as ffi_type, ffi_status, ffi_cif, ffi_closure}; /// Re-exports the `ffi_type` objects used to describe the types of /// arguments and results. /// /// These are from [`raw`](../../raw/index.html), but are renamed by /// removing the `ffi_type_` prefix. For example, `raw::ffi_type_void` /// becomes `low::types::void`. pub mod types { pub use raw::{ffi_type_void as void, ffi_type_uint8 as uint8, ffi_type_sint8 as sint8, ffi_type_uint16 as uint16, ffi_type_sint16 as sint16, ffi_type_uint32 as uint32, ffi_type_sint32 as sint32, ffi_type_uint64 as uint64, ffi_type_sint64 as sint64, ffi_type_float as float, ffi_type_double as double, ffi_type_pointer as pointer, ffi_type_longdouble as longdouble}; #[cfg(feature = "complex")] pub use raw::{ffi_type_complex_float as complex_float, ffi_type_complex_double as complex_double, ffi_type_complex_longdouble as complex_longdouble}; } /// Type tags used in constructing and inspecting `ffi_type`s. /// /// For atomic types this tag doesn’t matter because libffi predeclares /// [an instance of each one](types/index.html). However, for composite /// types (structs and complex numbers), we need to create a new /// instance of the `ffi_type` struct. In particular, the `type_` field /// contains a value that indicates what kind of type is represented, /// and we use these values to indicate that that we are describing a /// struct or complex type. /// /// # Examples /// /// Suppose we have the following C struct: /// /// ```c /// struct my_struct { /// uint16_t f1; /// uint64_t f2; /// }; /// ``` /// /// To pass it by value to a C function we can construct an /// `ffi_type` as follows using `type_tag::STRUCT`: /// /// ``` /// use std::ptr; /// use libffi::low::{ffi_type, types, type_tag}; /// /// let mut elements = unsafe { /// [ &mut types::uint16, /// &mut types::uint64, /// ptr::null_mut::<ffi_type>() ] /// }; /// /// let mut my_struct: ffi_type = Default::default(); /// my_struct.type_ = type_tag::STRUCT; /// my_struct.elements = elements.as_mut_ptr(); /// ``` pub mod type_tag { use raw; use std::os::raw::c_ushort; /// Indicates a structure type. pub const STRUCT: c_ushort = raw::ffi_type_enum_STRUCT as c_ushort; /// Indicates a complex number type. /// /// This item is enabled by `#[cfg(feature = "complex")]`. #[cfg(feature = "complex")] pub const COMPLEX: c_ushort = raw::ffi_type_enum_COMPLEX as c_ushort; } /// Initalizes a CIF (Call Interface) with the given ABI /// and types. /// /// We need to initialize a CIF before we can use it to call a function /// or create a closure. This function lets us specify the calling /// convention to use and the argument and result types. For varargs /// CIF initialization, see [`prep_cif_var`](fn.prep_cif_var.html). /// /// /// # Safety /// /// The CIF `cif` retains references to `rtype` and `atypes`, so if /// they are no longer live when the CIF is used then the behavior is /// undefined. /// /// # Arguments /// /// - `cif` — the CIF to initialize /// - `abi` — the calling convention to use /// - `nargs` — the number of arguments /// - `rtype` — the result type /// - `atypes` — the argument types (length must be at least `nargs`) /// /// # Result /// /// `Ok(())` for success or `Err(e)` for failure. /// /// # Examples /// /// ``` /// use libffi::low::*; /// /// let mut args: [*mut ffi_type; 2] = unsafe { /// [ &mut types::sint32, /// &mut types::uint64 ] /// }; /// let mut cif: ffi_cif = Default::default(); /// /// unsafe { /// prep_cif(&mut cif, ffi_abi_FFI_DEFAULT_ABI, 2, /// &mut types::pointer, args.as_mut_ptr()) /// }.unwrap(); /// ``` pub unsafe fn prep_cif(cif: *mut ffi_cif, abi: ffi_abi, nargs: usize, rtype: *mut ffi_type, atypes: *mut *mut ffi_type) -> Result<()> { let status = raw::ffi_prep_cif(cif, abi, nargs as c_uint, rtype, atypes); status_to_result(status, ()) } /// Initalizes a CIF (Call Interface) for a varargs function. /// /// We need to initialize a CIF before we can use it to call a function /// or create a closure. This function lets us specify the calling /// convention to use and the argument and result types. For non-varargs /// CIF initialization, see [`prep_cif`](fn.prep_cif.html). /// /// # Safety /// /// The CIF `cif` retains references to `rtype` and `atypes`, so if /// they are no longer live when the CIF is used then the behavior is /// undefined. /// /// # Arguments /// /// - `cif` — the CIF to initialize /// - `abi` — the calling convention to use /// - `nfixedargs` — the number of fixed arguments /// - `ntotalargs` — the total number of arguments, including fixed and /// var args /// - `rtype` — the result type /// - `atypes` — the argument types (length must be at least `nargs`) /// /// # Result /// /// `Ok(())` for success or `Err(e)` for failure. /// pub unsafe fn prep_cif_var(cif: *mut ffi_cif, abi: ffi_abi, nfixedargs: usize, ntotalargs: usize, rtype: *mut ffi_type, atypes: *mut *mut ffi_type) -> Result<()> { let status = raw::ffi_prep_cif_var(cif, abi, nfixedargs as c_uint, ntotalargs as c_uint, rtype, atypes); status_to_result(status, ()) } /// Calls a C function as specified by a CIF. /// /// # Arguments /// /// * `cif` — describes the argument and result types and the calling /// convention /// * `fun` — the function to call /// * `args` — the arguments to pass to `fun` /// /// # Result /// /// The result of calling `fun` with `args`. /// /// # Examples /// /// ``` /// use std::os::raw::c_void; /// use libffi::low::*; /// /// extern "C" fn c_function(a: u64, b: u64) -> u64 { a + b } /// /// let result = unsafe { /// let mut args: Vec<*mut ffi_type> = vec![ &mut types::uint64, /// &mut types::uint64 ]; /// let mut cif: ffi_cif = Default::default(); /// /// prep_cif(&mut cif, ffi_abi_FFI_DEFAULT_ABI, 2, /// &mut types::uint64, args.as_mut_ptr()).unwrap(); /// /// call(&mut cif, CodePtr(c_function as *mut _), /// vec![ &mut 4u64 as *mut _ as *mut c_void, /// &mut 5u64 as *mut _ as *mut c_void ].as_mut_ptr()) /// }; /// /// assert_eq!(9, result); /// ``` pub unsafe fn call<R>(cif: *mut ffi_cif, fun: CodePtr, args: *mut *mut c_void) -> R { let mut result: R = mem::uninitialized(); raw::ffi_call(cif, Some(*fun.as_safe_fun()), &mut result as *mut R as *mut c_void, args); result } /// Allocates a closure. /// /// Returns a pair of the writable closure object and the function /// pointer for calling it. The former acts as a handle to the closure, /// and is used to configure and free it. The latter is the code pointer /// used to invoke the closure. Before it can be invoked, it must be /// initialized with [`prep_closure`](fn.prep_closure.html) and /// [`prep_closure_mut`](fn.prep_closure_mut.html). The closure must be /// deallocated using [`closure_free`](fn.closure_free.html), after /// which point the code pointer should not be used. /// /// # Examples /// /// ``` /// use libffi::low::*; /// /// let (closure_handle, code_ptr) = closure_alloc(); /// ``` pub fn closure_alloc() -> (*mut ffi_closure, CodePtr) { unsafe { let mut code_pointer: *mut c_void = mem::uninitialized(); let closure = raw::ffi_closure_alloc(mem::size_of::<ffi_closure>(), &mut code_pointer); (closure as *mut ffi_closure, CodePtr::from_ptr(code_pointer)) } } /// Frees a closure. /// /// Closures allocated with [`closure_alloc`](fn.closure_alloc.html) /// must be deallocated with `closure_free`. /// /// # Examples /// /// ``` /// use libffi::low::*; /// /// let (closure_handle, code_ptr) = closure_alloc(); /// /// // ... /// /// unsafe { /// closure_free(closure_handle); /// } /// ``` pub unsafe fn closure_free(closure: *mut ffi_closure) { raw::ffi_closure_free(closure as *mut c_void); } /// The type of function called by a closure. /// /// `U` is the type of the user data captured by the closure and passed /// to the callback, and `R` is the type of the result. The parameters /// are not typed, since they are passed as a C array of `void*`. pub type Callback<U, R> = unsafe extern "C" fn(cif: &ffi_cif, result: &mut R, args: *const *const c_void, userdata: &U); /// The type of function called by a mutable closure. /// /// `U` is the type of the user data captured by the closure and passed /// to the callback, and `R` is the type of the result. The parameters /// are not typed, since they are passed as a C array of `void*`. pub type CallbackMut<U, R> = unsafe extern "C" fn(cif: &ffi_cif, result: &mut R, args: *const *const c_void, userdata: &mut U); /// The callback type expected by `raw::ffi_prep_closure_loc`. pub type RawCallback = unsafe extern "C" fn(cif: *mut ffi_cif, result: *mut c_void, args: *mut *mut c_void, userdata: *mut c_void); /// Initializes a closure with a callback function and userdata. /// /// After allocating a closure with /// [`closure_alloc`](fn.closure_alloc.html), it needs to be initialized /// with a function `callback` to call and a pointer `userdata` to pass /// to it. Invoking the closure’s code pointer will then pass the provided /// arguments and the user data pointer to the callback. /// /// For mutable userdata use [`prep_closure_mut`](fn.prep_closure_mut.html). /// /// # Safety /// /// The closure retains a reference to CIF `cif`, so that must /// still be live when the closure is used lest undefined behavior /// result. /// /// # Arguments /// /// - `closure` — the closure to initialize /// - `cif` — the calling convention and types for calling the closure /// - `callback` — the function that the closure will invoke /// - `userdata` — the closed-over value, stored in the closure and /// passed to the callback upon invocation /// - `code` — the closure’s code pointer, *i.e.*, the second component /// returned by [`closure_alloc`](fn.closure_alloc.html). /// /// # Result /// /// `Ok(())` for success or `Err(e)` for failure. /// /// # Examples /// /// ``` /// use libffi::low::*; /// /// use std::mem; /// use std::os::raw::c_void; /// /// unsafe extern "C" fn callback(_cif: &ffi_cif, /// result: &mut u64, /// args: *const *const c_void, /// userdata: &u64) /// { /// let args: *const &u64 = mem::transmute(args); /// *result = **args + *userdata; /// } /// /// fn twice(f: extern "C" fn(u64) -> u64, x: u64) -> u64 { /// f(f(x)) /// } /// /// unsafe { /// let mut cif: ffi_cif = Default::default(); /// let mut args = [&mut types::uint64 as *mut _]; /// let mut userdata: u64 = 5; /// /// prep_cif(&mut cif, ffi_abi_FFI_DEFAULT_ABI, 1, &mut types::uint64, /// args.as_mut_ptr()).unwrap(); /// /// let (closure, code) = closure_alloc(); /// let add5: extern "C" fn(u64) -> u64 = mem::transmute(code); /// /// prep_closure(closure, /// &mut cif, /// callback, /// &mut userdata, /// CodePtr(add5 as *mut _)).unwrap(); /// /// assert_eq!(11, add5(6)); /// assert_eq!(12, add5(7)); /// /// assert_eq!(22, twice(add5, 12)); /// } /// ``` pub unsafe fn prep_closure<U, R>(closure: *mut ffi_closure, cif: *mut ffi_cif, callback: Callback<U, R>, userdata: *const U, code: CodePtr) -> Result<()> { let status = raw::ffi_prep_closure_loc (closure, cif, Some(mem::transmute::<Callback<U, R>, RawCallback>(callback)), userdata as *mut c_void, code.as_mut_ptr()); status_to_result(status, ()) } /// Initializes a mutable closure with a callback function and (mutable) /// userdata. /// /// After allocating a closure with /// [`closure_alloc`](fn.closure_alloc.html), it needs to be initialized /// with a function `callback` to call and a pointer `userdata` to pass /// to it. Invoking the closure’s code pointer will then pass the provided /// arguments and the user data pointer to the callback. /// /// For immutable userdata use [`prep_closure`](fn.prep_closure.html). /// /// # Safety /// /// The closure retains a reference to CIF `cif`, so that must /// still be live when the closure is used lest undefined behavior /// result. /// /// # Arguments /// /// - `closure` — the closure to initialize /// - `cif` — the calling convention and types for calling the closure /// - `callback` — the function that the closure will invoke /// - `userdata` — the closed-over value, stored in the closure and /// passed to the callback upon invocation /// - `code` — the closure’s code pointer, *i.e.*, the second component /// returned by [`closure_alloc`](fn.closure_alloc.html). /// /// # Result /// /// `Ok(())` for success or `Err(e)` for failure. /// /// # Examples /// /// ``` /// use libffi::low::*; /// /// use std::mem; /// use std::os::raw::c_void; /// /// unsafe extern "C" fn callback(_cif: &ffi_cif, /// result: &mut u64, /// args: *const *const c_void, /// userdata: &mut u64) /// { /// let args: *const &u64 = mem::transmute(args); /// *result = *userdata; /// *userdata += **args; /// } /// /// fn twice(f: extern "C" fn(u64) -> u64, x: u64) -> u64 { /// f(f(x)) /// } /// /// unsafe { /// let mut cif: ffi_cif = Default::default(); /// let mut args = [&mut types::uint64 as *mut _]; /// let mut userdata: u64 = 5; /// /// prep_cif(&mut cif, ffi_abi_FFI_DEFAULT_ABI, 1, &mut types::uint64, /// args.as_mut_ptr()).unwrap(); /// /// let (closure, code) = closure_alloc(); /// let add5: extern "C" fn(u64) -> u64 = mem::transmute(code); /// /// prep_closure_mut(closure, /// &mut cif, /// callback, /// &mut userdata, /// CodePtr(add5 as *mut _)).unwrap(); /// /// assert_eq!(5, add5(6)); /// assert_eq!(11, add5(7)); /// /// assert_eq!(19, twice(add5, 1)); /// } /// ``` pub unsafe fn prep_closure_mut<U, R>(closure: *mut ffi_closure, cif: *mut ffi_cif, callback: CallbackMut<U, R>, userdata: *mut U, code: CodePtr) -> Result<()> { let status = raw::ffi_prep_closure_loc (closure, cif, Some(mem::transmute::<CallbackMut<U, R>, RawCallback>(callback)), userdata as *mut c_void, code.as_mut_ptr()); status_to_result(status, ()) }